The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells

نویسندگان

  • Stephen Wilson
  • Lingling Fan
  • Natasha Sahgal
  • Jianfei Qi
  • Fabian V. Filipp
چکیده

The lysine demethylase 3A (KDM3A, JMJD1A or JHDM2A) controls transcriptional networks in a variety of biological processes such as spermatogenesis, metabolism, stem cell activity, and tumor progression. We matched transcriptomic and ChIP-Seq profiles to decipher a genome-wide regulatory network of epigenetic control by KDM3A in prostate cancer cells. ChIP-Seq experiments monitoring histone 3 lysine 9 (H3K9) methylation marks show global histone demethylation effects of KDM3A. Combined assessment of histone demethylation events and gene expression changes presented major transcriptional activation suggesting that distinct oncogenic regulators may synergize with the epigenetic patterns by KDM3A. Pathway enrichment analysis of cells with KDM3A knockdown prioritized androgen signaling indicating that KDM3A plays a key role in regulating androgen receptor activity. Matched ChIP-Seq and knockdown experiments of KDM3A in combination with ChIP-Seq of the androgen receptor resulted in a gain of H3K9 methylation marks around androgen receptor binding sites of selected transcriptional targets in androgen signaling including positive regulation of KRT19, NKX3-1, KLK3, NDRG1, MAF, CREB3L4, MYC, INPP4B, PTK2B, MAPK1, MAP2K1, IGF1, E2F1, HSP90AA1, HIF1A, and ACSL3. The cancer systems biology analysis of KDM3A-dependent genes identifies an epigenetic and transcriptional network in androgen response, hypoxia, glycolysis, and lipid metabolism. Genome-wide ChIP-Seq data highlights specific gene targets and the ability of epigenetic master regulators to control oncogenic pathways and cancer progression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The histone H3K9 demethylase KDM3A promotes anoikis by transcriptionally activating pro-apoptotic genes BNIP3 and BNIP3L

Epithelial cells that lose attachment to the extracellular matrix undergo a specialized form of apoptosis called anoikis. Here, using large-scale RNA interference (RNAi) screening, we find that KDM3A, a histone H3 lysine 9 (H3K9) mono- and di-demethylase, plays a pivotal role in anoikis induction. In attached breast epithelial cells, KDM3A expression is maintained at low levels by integrin sign...

متن کامل

Investigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach

Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active genes. In this light, the aim of this study was to invest...

متن کامل

c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer

Epigenetic factors play critical roles in prostate cancer (PCa) development. However, how they contribute to neuroendocrine differentiation (NED) and castration-resistant PCa (CRPC) is not fully understood. Using bioinformatics and biochemical approaches to analyze cell-based models of NED and CRPC, we found a cluster of epigenetic factors whose expression is downregulated during NED and upregu...

متن کامل

JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer.

Histone methylation is a dynamic process that participates in a diverse array of cellular processes and has been found to associate with cancer. Recently, several histone demethylases have been identified that catalyze the removal of methylation from histone H3 lysine residues. Through bioinformatic and biochemical analysis, we identified JARID1B as a H3K4 demethylase. Overexpression of JARID1B...

متن کامل

The histone demethylase Kdm3a is essential to progression through differentiation

Histone demethylation has important roles in regulating gene expression and forms part of the epigenetic memory system that regulates cell fate and identity by still poorly understood mechanisms. Here, we examined the role of histone demethylase Kdm3a during cell differentiation, showing that Kdm3a is essential for differentiation into parietal endoderm-like (PE) cells in the F9 mouse embryonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017